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Abstract

Double-diffusive natural convection in a slender vertical porous enclosure is studied both analytically and numerically. The buoyancy
forces that induce the fluid motion result frolretimposition of both a vertical temperature djemt and a horizontal solutal gradient. The
first part of the study contains an analytical solution valid for stratified flows in enclosures with relatively high aspect ratios. The second part
of the study contains a numerical study of the full governing equations that validate the analytical model. Comparison between the numerical
and analytical solutions covers the thermal Rayleigh number ragge 10?2 < Ry < 104, the buoyancy rangeQ N < 10® and the Lewis
number range 1% < Le< 102, In the absence of a horizontal solutal gradient= 0), the solution takes the form of standard Bénard
bifurcation. The asymmetry resulting from the imposition of a smalll« 1) horizontal solutal gradient is investigated. The existence of
multiple solutions, for a given range of the governing parameters, is demonstrated.
0 2003 Elsevier SAS. All rights reserved.

1. Introduction recently Mamou and Vasseur [11] studied analytically and
numerically double diffusive convection in a horizontal cav-
Recent interest in the study of flows with two sources of ity under different types of thermal and solutal boundary
buoyancy through porous media has been motivated by suchconditions. The existence of multiple solutions for a given
diverse engineering problems alectrochemical processes,  set of the governing parameters, was demonstrated by these
contaminant transport in saturated soils, food processing,authors. Double diffusive convection, in a vertical cavity
geophysical systems, etc. The growing volume of papers ingypject to horizontal temperature gradients, has also be in-
this field has been recently review by Nield and Bejan [1]. vestigated by Trevisan and Bejan [12,13], Alavyoon [14],
Earlier stL!dies on double-diffusive natural cqnvection in Alavyoon et al. [15], Goyeau et al. [16], Mamou et al. [17—
porous media focused on the case of a horizontal layer;11 ang Charrier Mojtabi et al. [22]. It was demonstrated
subject to ver_tlcal temperatirand concentratl_on gradi- that, depending on the governing parameters of the prob-
ents. Thus, Nield [2], Tauton et al. [3], Rubin [4] and |6 a0 on the thermal to solutal buoyancy ratipvarious
Poulikakos [5] relied on linear stability theory to investi- modes of convection prevail. In particular, in the case of op-

gate the onset of convection for various thermal and solutal posing buoyancy forcesv < 0), it was observed that there
boundary conditions. Finite amplitude flow, for this geomet- exists an interval o, depending on the parametric values,

rical configura_tion, was investiged by Rudraiah et gl. [6], in which permanent oscillating flows occur.
Brand and Steinberg [7], Murray and Chen [8], Trevisan and The above investigations are dealing with the case of
Bejan [9] and Chen and Chen [10]. Various flow regimes, : . . . .
steady and unsteady, were identified by these authors. More0rous layers subject to either honzon_tal or verf[lca.ll gradi-
ents of heat and mass. In many applications, in industry,
- oceanography and geophysics, the porous layer is often un-
Y This work was supported by the Natural Sciences and Engineering ger the imposition of cross fluxes of heat and mass. Despite
Refeé‘;f:'egsounn dci'r"'gcai':ﬁgf" this fact, little attention has been dedicated to this type of sit-
E-mail address. abahloul@polymtl.ca (A. Bahloul). uation. Kalla et al. [23,24] investigated double diffusive con-
URL: http://www.polymtl.ca (A. Bahloul, P. Vasseur). vective within a shallow horizontal porous layer salted from
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Nomenclature
Ay aspect ratio of the cavity: H'/L’ u dimensionless velocity in-direction,= u'L’ /«
C normalized mass fraction v dimensionless velocity im-direction,= v'L’ /«
Cs dimensionless concentration gradient in X dimensionless coordinate axis,x’/L’
y-direction y dimensionless coordinate axis,y’/L’
Cr dlm_en5|_0nless concentration gradient in Greek symbols
y-direction o L
D mass diffusivity of species............ 2L o thermal diffusivity,= k/(0C) s ....... nf-s-
g gravitational acceleration.............. -gTP Bs concentration expansion coefficient
H’ heightof enclosure ....................... m Br thermal expansion coefficient............ X
j’ solute flux per unitarea.......... kg2s?t € normalized porosity of the porous medium,
k thermal conductivity ............ wh- LKL =¢fc _ B
K permeability of the porous medium........ 2m v kinematic viscosity of fluid ... ...
L width of the enclosure .................... m M dynamic viscosity of the fluid. . . .. kg tst
Le Lewis number= /D Os dimensionles& horizontal concentration profile
N buoyancy ratio= BsAS’/Br AT’ or dimensionles& horizontal temperature profile
= : : -3
q’ constant heat flux per unitarea. ... ..... -2 P density of the fluid .................. - 3“‘9'71
Ry thermal Rayleigh numbes ¢87 K AT'L’ /av (pC)r heat capac!ty offluid............. oK
R solutal Rayleigh numbes Ry N Le (pC)p heat.capacny of saturated porous -
S dimensionless concentratiOﬁ,(S’ _ S(/))/AS, Lnedlum EEEEERE e K
AS  dimensionless wall-to-wall concentration o eat capacity ratio= (pC)p/(0C) ¢
difference v dimensionless stream functioa, ¥’ /a
S’ concentration of the denser component-ri7(g3 Ve stream function value at the center of
So reference concentration at= 0, the en_closure .
Y =0 kap—3 ¢ porosity of the porous medium
AS characteristic concentratios, j'L’ /D kg-m—3 Superscript
Sh S.herwo.od numpel: 1/AS, Ec;. (31) / dimensional variable
t dimensionless times 'a/o L’ _
T dimensionless temperatuee (T’ — T}) /AT’ Subscripts
AT*  related to the intensity of heat transfer, Eq. (30) max maximum value
T} reference temperature gt=0,y' =0 min minimum value
AT’ characteristic temperature,q’'L’/k 0 reference state

the bottom and heated horizontally by an uniform heat flux. = The present paper focuses on the analysis of the flow,
The existence of multiple solutions was demonstrated to ex-the heat and the mass transfén a tall cavity. A vertical

ist both analytically and numerically. Also, in reference [24], temperature gradient is imposed vertically on the enclosure
the asymmetry brought by the side heating to the classicalwhile uniform mass fluxes are applied along the vertical
Bénard bifurcation was investigated. For supercritical con- Walls. The layout of the paper is as follows. In the next
vection the existence of three different solutions is possible, section the physical system and the mathematical model
one of these solution being unstable. The case of a cavity,are introduced. The numerical procedure used to solve the
heated and cooled isothermally along vertical walls while full governing equations is then discussed. This is followed
concentration gradient is imposed vertically has been con-PY the derivation of an approximate analytical model, valid
sidered by Mohamad and Bennacer [25]. Numerical results for tall cavm_es. Som_e resu_lts and discussions are presented
were obtained for the case of a cavity of aspect ratio two. It in the fo_llowm_g sgcﬂon. Finally, some conclusions for the
was reported that the flow becomes unstable for finite rangepresent investigation are reported.

of solutal-to-thermal buoyancy ratio and it is possible to ob-

tain different solutions in this region. Also, it was found that 2 prgblem statement

strong stratified fluid might suppress the thermal convection.

Numerical results were also obtained by these authors [26]  The physical model and coordinate system are shown
on the basis of two- and three-dimensional models. It was in Fig. 1. The geometry under consideration is a two-
found that the difference in the rate of heat and mass transferdimensional vertical enclosure of height and width L’
predicted by the two models was not that significant. filled with saturated porous medium. A vertical heat flix
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the continuity equation, the stream functignis defined
such thatt = 0¥/dy andv = —9W¥/0dx.

In terms of the above definitions, the dimensionless
governing equations expressing conservation of momentum,
energy and species are, respectively

a
V2 = —Rr——(T +NS) (3)
X
aT aT oT
VT =u—+v—+ — 4
“ox TV T “)
1 N N N
> VS =u— fv— fe— 5
X Le “ox TUoy Tl ®)
The dimensionless boundaries, sketched in Fig. 1, are
1 oT as
x===, v =0, — =0, —=1 (6a)
2 ax ax
Ar aT as
y=+21  w=o0, S —-_1 22_0 (6bh)
2 dy dy
The dimensionless parameters that characterize the prob-

lem are the aspect ratio of the encloswre = H'/L’, the
thermal Rayleigh numbeR; = gBr KAT'L’ /av, the solu-
; tal to thermal buoyancy rativ = 8sAS’/Br AT’, the Lewis
numberLe = «/ D and the normalized porosity

In the above definitionX is the permeability of the
porous mediumg the acceleration due to gravity andhe
kinematic viscosity of the fluid.

q

Fig. 1. Schematic of the problem with coordinate system.

is applied on the bottom and top walls. A solute concentra-
tion gradient,j’, is applied on the two vertical impermeable

walls. The fluid is assumed to be incompressible, Newtonian
and viscous. The porous medium is considered to be uniform
and in local thermal and compositional equilibrium with the

fluid. The effect due to viscous dissipation and inertial ef- . ;
fects are assumed to be negligible. The thermophysical pro-, For a slender cavityA s >> 1), it has been demonstrated

prieties of the fluid are assumed to be constant, except den" the past by several authors (see, for instance, Alavyoon et

sity variation in the buoyancy term, which depends linearly al. [15] and Mamou et al. [18]) that the governing equations

on both local temperature and concentration, i.e., Boussines an be significantly simplified by the approximation of the
approximation is supposed to be valid arallel flow. With this approximation = 0 andv = v(x)

, ) L in the central part of the cavity, i.e., outside the end regions.
p= Po[l - :BT(T - To) - :BS(S - So)] 1) The approximation allows the following simplifications
wherepyq is the fluid density at temperatuf& and concen-

3. Analytical solution

tration Sy, andgr andgs are the thermal and concentration ¥ =v(x) )
expansion coefficients, respectively. The subscript o refersto? = Cry + 07 (x) 8)
conditions at the origin of the coordinate system. S=Csy+6s(x) (9)

The following dimensionless variables are used

(o y) = (&' ¥') /L, w.v) = (' V)L fa whereCr andCg are constants expressing the gradients of

temperature and concentration along fhdirection.

t=1'a/L'?0, T =(T"-T3)/AT’ @ With these approximation the governing equations (3)—
S= (8" —5p)/AS, AT =¢'L'/k (5) reduce to the following expressions
AS' =j'L'/D, e=®/o d2y dor dog

. : . —=—Rr|—+N—"=- (10)
where ¢’ is the time,k and D the thermal conductivity dx2 dx dx
of the saturated porous medium and the mass averageddzeT dw
diffusivity through the fluid mixture, respectivelyy = @z = Crgr (11)
k/(pC) ¢ the thermal diffusivity of the porous mediumm,= 2x *
(pC)p/(pC) s the saturated porous medium to fluid heat d_e; = —Cy Led_gl/ (12)

capacity ratio, an@ the porosity of the porous matrix. dx dx
In the following analysis, the stream function formulation Egs. (11) and (12), under boundary conditions (6a), can be
is introduced in the mathematical model. In order to satisfy rewritten as follows



do
=T _ _crw (13)
dx
do
= _LeCsw +1 (14)
dx

Substituting the above equations into (10) the following
governing equation is obtained

d2y
—— =AY + B 15
02 + (15)
where
A=da?=RyCr + RsC

a TV T sCS§ (16)
B=—RrTN

andRs = Rr N Le.

The set of ordinary differential equations (13)—(15) can
be easily solved to yield a closed form analytical solution.
Depending on the sign ofA two types of solutions are
possible, as discussed, for instance, by Mamou et al. [20].
For the present problem we have:

31 CaseA>0

By settingA = a? (a > 0), the solution of Egs. (13)—(15)
satisfying the boundary conditions in thedirection, gives

_ B coshax)
GRFIC=7 20 0
T(x,y)=Cr(y+ D) (18)
S(x,y)=Cs(y —LeD) +x (19)

where
_ B

a?

sinh(ax)
|:a cosha/2) - xi|

The temperature and concentration gradientg-tfirec-
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The above values of 7 and Cg can be combined with
the value ofz2 = Ry Cr + RsCs to yield

a?(1+ F)(1+LE*F)

+ RrF(1+L€’F) — RsLeG(1+ F) =0 (23)

The values ofCy and Cys in the stream function and
temperature and concentration fields, Egs. (17)—(19), can be
obtained by solving the above transcendental equation for
any combination of the controlling parametats, N and
Le.

Substituting Egs. (18) and (19) into Egs. (8) and (9), itis
found that the heat and mass transfers are given, respectively,
by

a3

AT* = 24
BCrla —2tanRa/2)] (24)
and
Sh= a’ (25)
"~ BCslLe[2tania/2) —a] + a3
32 CaseA <O
The caseA = —b? (b > 0), is now considered. The

resulting equations can be deduced by substitutiag b in
the above solution. Since si@h) =i sin(b) and coskib) =

i cogb) it follows that resulting solution is similar to that
given by Egs. (17)-(23) with the hyperbolic functions
replaced by circular functiorizor instance, the parameter
can be computed from the following equation

tion are determined by imposing zero heat and mass transfer

X ; . 2
across any transversal section of the cavity (see, for instance, _ B

Mamou et al. [17]). In this way, after some algebra, it is
found thatCy andCyg can be expressed as

-1 LeG
“r=17F STIier (202)
where
1/2 1/2
F= / w2dx, G= / ¥ dx (20b)
-1/2 -1/2

Substituting Eq. (17) into Eq. (20) and performing the
resulting integrals it is readily found that

Fe B? [a(cosr?(a /2) +1/2) — 3cosha/2) sinha /2)}
Cad cost(a/2)
(21)
and
_ B tanh(a/2)

b*(1+ F)(1+L€E*F)
+ RrF(1+L€E*F) — RsLeG(1+ F) =0 (26)
In this caseF’ andG are given by:
b(co2(b/2) +1/2) — 3cogb/2) sin(b/2)
- b5[ co2(b/2) } @7)
and
G= —% [1 - tar;% 2)} 28)

4, Numerical solution

A finite-difference numerical solution technique based
on integration over the control volume is used to solve the
model equations with apprapte boundary conditions. The
hybrid scheme suggested by Patankar [27] was utilized.
This scheme employs the upwind method only when the
coefficient matrix becomes negative due to a large value
of the velocity in the convection term. All other points are
approximated by central differences. The application of the
method to the solution of nattal convection problems has
been discussed in details in the past and does not need to be
repeated here.
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In order to improve the resolution of dependent variables
a non-uniform grid was used. The non-uniform grid has
denser clustering near the wall boundaries. Grid indepen-
dency of the results was established by employing differ-
ent size meshes, ranging in size fromx4Q20 to 60x 180.
The results indicated a maximum relative difference of about
1.5% in the value of the maximum stream functidpax.
Additionally, the relative difference between both grids for
the vertical velocity profile, at the center of the cavity, is less
than 1.2%. Thus a 68 180 grid was used for all the results
reported here.

To ensure convergence of the numerical algorithm the
following criteria is applied to all dependent variables over
the solution domain

n+1
I$i;” =90l oo
2.2 T <
il

i

(29)

where ¢ represent a dependent variable, the indexes
indicated a grid point and the indexthe current iteration.

Typical numerical results are presented in Fig. 2 for
Rr =400,Le=2, N =0.1 and Ay = 8. On the graph
streamlines, isotherms and tsmcentrates are presented in
Fig. 2(a) from left to right. From theses results, itis clear that
for a tall cavity (A r > 1) the flow in the core region of the
enclosure is essentially parallel while the temperature and
concentration are linearly stratified in the vertical direction.
The analytical solution, developed in this study relies on
these observations. Fig. 2(b) shows the streamfunction,
temperature and concentration distributions in the horizontal
mid-plane(y = 0). The agreement with the numerical and
the analytical results is observed to be excellent. Numerical
tests have been performed to determine the minimum aspect
ratio above which the flow can be assumed to be parallel. In
the range of the parameters considered here it was found that
the numerical results can be considered independent of the
aspect ratio wher ; > 6. For this reason most of the results
presented in this investigation were obtained4gr= 8.

In the present notation, the heat and the mass transfers
within the cavity are given respectively by the flowing
expressions

AT* = _qi/ = i (30)
kAT'/L' AT
and
-4 1 (31)
DAS'/L’  AS
where

AT’ =T'(0,1/2) — T'(0, —1/2) and
AS = 5'(0,1/2) — §'(0, —1/2)

are the temperature and contration differences between
the right and left walls of the enclosure at the positjosa 0.

@)

=
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©

Fig. 2. Numerical results foR7 = 400,Le=2, N =01 andAy = 8;

(a) Contour lines of streamfunction, teerpture and concentration; (b) dis-
tribution of streamfunction, (c) temperature and concentration in the hori-
zontal mid-plane¥, = 8.714, AT* = 7.094,5h = 5.537.

is not possible to predict analytically the Nusselt number in
terms of the temperature differences between the horizontal
walls. For this reason, the temperature differemc&*,

It is noted that the present analytical solution is not valid between the vertical walls, is used here as an indication of
in the vicinity of the thermally active boundaries. Thus, it the intensity of the heat transfer within the enclosure.
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10

5. Resultsand discusion

: analytical

[] : numerical

In the present section a comparison is made between the

analytical model based on the parallel flow approximation

and the numerical solution of the full governing equations
described early. As discussed above, the present problem ~ ¢ o}
is governed by five dimensionless parameters, namely [
Le, N, Ay ande. In the following discussion, it is assumed [
that the normalized porosity of the porous medium is 1. S
Also, the analytical results predicted by the present model
are more accurate at large valuedf (A > 1).

0 100 200 300 400

5.1. Convection induced solely by vertical gradients of heat RT
(N« @)
The case of convection in a vertical layer heated from 10; : analytical
the bottom by a constant heat flux corresponds to the limit i = umerical
N « 1. For this situation, it can be deduced from the 8H
equations corresponding to the case: 0 that AT [
P"R 61 .
P = z—zT cognmx) (32a) [ =
nemw -
2.2 PnR 4 [ |
=7 7 T Sin(ax) (32b) -
Rt [
2 n
AT* = 210 gy (32¢) 2r
P"Rr S R R B,
where 0 100 200 R 300 400
T
P = i’;—” 2(Ry — nx?) (32d) (b)
T

Fig. 3. Bifurcation diagram foV « 1: (a) ¥, versusRy; and (b) AT*

andn =1, 3,5, ... corresponds to the number of cells. Only versusRy.

the first mode: = 1 is unicellular. The above equations are
similar to those reported by Sen et al. [28] while studying
the occurrence of multiple solutions in an inclined tall cavity full governing equations, depicted by black dots. The effect
heated from below by a constant heat flux. of Ry on AT* is presented in Fig. 3(b). Here again, a good

Fig. 3(a) shows the bifurcation diagram f@rc as a agreement between the anatgli and numerical results, is
function of thermal Rayleigh numbeR;. The particular ~ observed.
case considered here corresponds to a classical Rayleigh— According to the analytical model depicted above multi-
Bénard situation for which a conductive statt £ —y, cellular convection, consisting im cells in thex-direction,
v = O) eXiStS, up to a critical Ray|e|gh numbﬁﬁ,c above is pOSSible (|n Flg 3, Only the multicellular mode= 3 is
which convection occurs. From Eq. (32d) it is seen that represented). However, it has not been possible to confirm
convection is possib]e fCRTC > n2ﬂ2, such that the lowest numel‘ically, the existence of these modes. Itis then believed
Rrc at which convective motion occurs is given by the thatthese modes are unstable.
unicellular flow for whichRr¢c = 2. A similar result has
been predicted in the past by Sen et al. [28] on the basis 0f5.2. Convection induced solely by horizontal gradients of
the linear stability analysis. solute (N > 1)

The prediction of the onset of convection is correctly
predicted by the parallel flow approximation due to fact The case of convection resulting only from the imposition
that the onset of motion, within a vertical layer heated from of constant fluxes of concentratiofi, on the vertical walls
below by a constant heat flow, occurs at zero wave number.of the cavity, can be deduced from the present theory. This
From Fig. 3(a) it is observed that, above the supercritical situation corresponds to the limiit >> 1, for which it can be
Rayleigh numbeR7¢ = 2, the resulting unicellular flow  demonstrated from Egs. (17)—(23) that
can rotate indifferently clockwise or counterclockwise in
agreement with the plus or minus sign in front of Eq. (32d). 7 — XS (1 _ coshtax) ) (33a)
The analytical solution, represented by a solid line, is seen to a? cosha/2)
be in excellent agreement with the numerical solution of the S(x, y) =Cs(y + D) +x (33b)
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and
Sh= i (33¢)
" RsCs[2tanHa/2) — al + a3
where
a’ = RsCg
Rs[ sinh(ax)
b= _ﬁ[a cosha/2) —xi| (330)
U =y/lLe

Furthermore, in the boundary layer regime, for which
Rs > 1, itis readily found from Egs. (33) that

T~
Sh~a/2

(34a)

(34b)

wherea = Ré/s.

Fig. 4(a) and (b) show, the evolution & and Sh with
the solutal Rayleigh numbeRs = Ry N Le. The variable
¥ = Ley, correspond to a streamfunction normalized with
respect with the mass diffusivity of speciés With this
renormalization, the evolution af¢ versusRs can be rep-
resented by a single curve, independentiyafDue to the

: analytical

= : numerical ——

—

20¢
15F

10F

: analytical

®  : numerical

sh 5F

(b)

Fig. 4. Effect of solutal Rayleigh numbeg for R <1 on (8)¥;
(b) Sh.

and

659

solutal boundary conditions considered here, the resulting
unicellular convective cell rotates in a anticlockwise direc-
tion (¥¢ > 0). The boundary layer regime, valid approxi-
mately for Rs > 10, is also described as a dashed line in
the graph. Here again it is observed that the analytical solu-
tion, based on the parallel flow hypothesis, agrees well with
the numerical results.

5.3. Convection induced by cross gradients of heat and
solute

In this section natural convéan is considered for inter-
mediate values oWV for which the flows result from the im-
position of cross temperature and concentration gradients.

Fig. 5(a)—(c) illustrate the effect of the imposition on the
vertical walls of a small horizontal solutal gradiem¥ &
0.01, 0.5 and 1) on the magnitude of the stream function
¥ and the heat and mass transfetsI’™ and Sh, at the
center of the cavity as a function & for Le = 10. As
discussed in Fig. 3(a), in the absence of solutal buoyancy
forces (V = 0), the resulting flow pattern is induced solely
by the vertical thermal gradient imposed on the horizontal
wall. For this situation, convection is possible only when the
Rayleigh number is above a critical valRe ¢ > 72 and the
resulting unicellular flow can rotate indifferently clockwise
or counterclockwise. The imposition of a horizontal solutal
gradient (v ## 0) changes considerably this situation. Thus,
it is observed from Fig. 5(a) that convection is now possible
for any value of the thermal Rayleigh number. The resulting
flow circulation is counterclockwis@?,. > 0) in agreement
the solutal boundary conditionsBiy. 1. These flows, which
numerically can develop from the rest stéfe= 0) as initial
conditions, are referred as “natural flows”. However, as it
can be observed from Fig. 5(a), the clockwise circulation
existing for N = 0 is also possible ifN is sufficiently
small and Ry is above a critical value which depends
upon the values oiN andLe. The flows, which rotate in
direction opposite to the buoyancy forces imposed by the
horizontal solutal gradient, arcalled “antinatural”. These
type of flows have been discussed in details in reference [27].
These two different solutions are illustrated in Fig. 6 which
show the contour lines of streamfunction, temperature and
concentration for the naturgFig. 6(a)) and antinatural
(Fig. 6(b)) stable flows that coexist f&r = 100,N = 0.01,
Le =10 and Ay = 8. Numerically, the antinatural flows
can be reached only by imposing an impulsing flow pattern
rotating in the appropriate @iction as an initial condition.
Once an antinatural state could have been obtained, for a
given value ofRr, it can be used as initial conditions to
run another antinatural state for a neRy-. It is noticed
that for a given value oV there is a critical value oRy
for the existence of antinatural states. The valueRef,
predicted by the analytical model, is presented in Fig. 5(d) as
a function of N. Thus, for instance, fav = 0.5 andLe= 10
antinatural flows are possible only in the range of<3
R < 360. In Fig. 5, the analytal solution for antinatural
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: analytical

® 4 v : numerical

0 100

7500 400 500

Ry

20

N=0.01

: analytical

™ A v : numerical

100 200 800 400 500

Ry

(@) (b)

12

: analytical

6000

- m v : numerical

4000

2000

R

400 500
Ry
© (d)

0.8

Fig. 5. Effect of thermal Rayleigh numbé&, and buoyancy ratiav for Le= 10 on (a)¥; (b) AT*; (c) Sh; and (d) Critical Rayleigh numbeRr¢ as a
function of N for the existence of antinatural flows.

flows is represented by a solid line, corresponds to an increased. An exellent agreemt between the analytical on
unicellular flow pattern, while the dashed line corresponds the numerical model is observed in Fig. 7 even for the very
to a three cellular flows pattern. Numerical confirmation of low values of¥- obtained for the negative values Bf-.
the one cell antinatural mode has been obtained for very  Fig. 8(a) illustrates the effect of the buoyancy ratiyn
small values ofN. However, it has not been possible to on ¥ for Le= 10 and various values dt;. As discussed
simulate numerically the three cells mode predicted by the earlier, forN = 0, the flow circulation induced solely by the
analytical model, which is thus believed to be unstable. vertical thermal gradient rot@s indifferently clockwise or
Whenever a numerical solution could have been obtained it counterclockwise. Thus, for sufficiently low values df,
is observed from Fig. 5(a)—(c) that this latter is in general it is observed Fig. 8(a) that for a given value Bf the
in very good agreement with thealytical model resulting  strength of the anticlockwise natural flo@c > 0) is
from the parallel flow approximation. approximately the same as that of the clockwise natural
Fig. 7 shows the effect oRy on the magnitude o®¢ flow (¥¢ < 0). Naturally, the natural flow exists for any
for Le= 10, Rg = 10 and—600< Ry < 600. In this graph value of the buoyancy rati&v. As the value ofN is made
the caseRy = 0 corresponds to convection induced by a larger the flow pattern is progressively more and more driven
destabilizing horizontal solutal gradient in the absence of by the solutal gradients. Thus, the valuewf increases
thermal effects. FoR7 > 0 both the thermal and the solutal with N, i.e., with Rg = Ry N Le, to reach the boundary
effects contribute to promote the intensity of convection such layer regime depicted by the dashed lines in the graph.
that ¥ increases withRy. However, the case akRy <0 Numerical confirmation of the natural flow circulation is
corresponds to a cavity heated from the top and cooled fromobtained for the range of parameters considered here. On the
the below. The resulting thermal vertical gradient is now other hand, it is observed from Fig. 7(a) that, as expected,
stabilizing the system such thag — 0 as the value oR7 is the antinatural flow circulation is possible only if the value
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Fig. 6. Contour lines of streamfunctiotemperature and concentration for

Le=10,N =0.01 andRy = 100: (a) antinatural solution; and (b) natural
solution.

of N is below a critical valueV, which depends upoRry.
Thus N. = 1.11 for Ry = 50 and N. = 0.43 for Ry = 0.2b———dp— oy
500. The value ofN,, predicted by the analytical model, 100 200 300 R 400 500
is presented in Fig. 8(b) as a function 8f. Numerical r
confirmation of the antinatural flow is depicted in Fig. 8(a). ()

It was found impossible to obtain numerical results in the Fig. 8. (a) Flow intensity? as a function of buoyancy ratis and thermal
vicinity of the turning pointN.. In fact, the numerical  Rayleigh numberRy for Le= 10 and (b) critical buoyancy rati&/c as a
results obtained for values @ above those indicated on function of R for the existence of antinatural flows.

the graph were found to bifurcate towards the natural flow

solution. ratio N. When N is sufficiently small the flow circulation
The effect of the Lewis numbdte on the magnitude is driven mostly by the thermal effect and the results are
of the stream function at the center of the cavipy independent of the Lewis effect. For large values\othe

is presented in Fig. 9(a) as a function of the buoyancy flow is then driven by the solutal buoyancy forces ahd



662
: — : analytical
12 | wave : numerical
'7g [
¢ 8 Le=0.5
| d
[ /
4 ===
i —_— h)
0 i e 10
| Le=0.5 T
- > an é(: ndary layer
= 1 ou
-47[ Hl“I—l‘ Hliu ‘Hll HIAHHHS
10 10 10 10 10 10
N N
@
N,

(b)

Fig. 9. (a) Flow intensity?¢ as a function of buoyancy rativ and Lewis
numberLefor R =50 and (b) critical buoyancy ratity¢ as a function of
Lefor the existence of antinatural flows.

is observed to depend strongly upon the valué@fThis

is due to the fact that’c is normalized with respect to
the thermal diffusivitye. However, as discussed in Fig. 4
upon normalizingl¢ with respect to the mass diffusivit®
(i.e., ¥¢), the results would be independent bé. It is
also observed from Fig. 9(a) that., the maximum value
of N for the existence of antinatural flows, depends upon
the value ofLe. This is illustrated in Fig. 9(b) which shows
the variation ofN. with Le as predicted by the analytical
model for Ry = 50. It is seen thatvc — 0.38 asLe— 0
while N0 — 1.1 as Le — oo. The transition between
these two asymptotic values occurs in the range <Q
Le < 10.

6. Summary

A study is conducted to investigate the patterns and char-

acteristics associated with the double diffusion convection in
a tall vertical cavity heated from the below and salted from
the sides. The effects of the controlling parameters, includ-
ing the thermal Rayleigh nhumber, Lewis nhumber and buoy-
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ancy ratio on the present problem is investigated. The major
results can be summarized as follows:

(i) The numerical solution of the full governing equations
indicate that forA ; > 1 the flow is parallel in the cen-
tral part of the enclosure while the vertical temperature
and concentration fieldsre linearly stratified.

(i) An analytical solution of the steady state equations,
based on the parallel flow approximation, leads to
relatively simple solutions. Closed form expressions
are obtained in the two extreme cases of heat transfer
(N =0) and mass transféiv — oo) driven flows.

(iii) The existence of multiple solutions, for a given set
of the governing parameters has been demonstrated
both analytically and numerically for the case of small
values of the buoyancy ratiy. Thus depending upon
the initial conditions used to start the numerical code
“natural flows” and “antinatural flows” can be observed
in the system.
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